Trusted Answers
Vacuum and Leak Detection Reference

## Formulas, Properties, and Glossary

Training Guide



## Help from the Vacuum Experts at Agilent

This reference allows you to keep important properties, formulas, and terms at your fingertips.

Talk with a vacuum expert
Visit our vacuum products or services sites for a wealth of technical information. Or use the ChatNow function from any page to get fast, helpful answers to all your vacuum questions.

## Chat Now

www.agilent.com/en/product/vacuum-technologies
www.agilent.com/en/service/vacuum-product-leak-detector-services

## Table of Contents

Formulas and tables
Common physics values ..... 4
Ideal gas equation ..... 4
Physical properties of some gases ..... 4
Temperature scale - conversion table ..... 4
Pressure conversion table ..... 5
Some molecular relationships (at 273 K) ..... 5
Gas flow characteristics ..... 5
Conductance - viscous flow formulas ..... 6
Conductance - molecular flow formulas ..... 6
Series conductance and effective pumping speed ..... 6
Pumping speed - conversion table ..... 6
Throughput ..... 7
Unit of throughput - flow - leak rate - conversion table ..... 7
Pump down calculation (molecular flow) ..... 7
Ultimate pressure ..... 7
Outgassing rate per unit area ..... 7
Vacuum technology standards ..... 8
Graphic symbols in vacuum technology DIN28401 ..... 9
Vacuum pumps ..... 9
Vacuum pump accessories ..... 10
Vacuum chambers ..... 10
Isolation devices ..... 10
Valve mode of operation ..... 11
Connections and tubes ..... 11
Vacuum gauges ..... 11
Valve mode of operation ..... 11
Glossary of vacuum terminology ..... 13
Contacts ..... 24

## Formulas and Tables

## Common physics values

| Acceleration Gravity | $\mathrm{g}=9.8066 \mathrm{~m} \mathrm{sec} 2\left(32.174 \mathrm{Ft} \mathrm{sec}^{2}\right)$ |
| :---: | :---: |
| Atomic Mass Unit Amu | $=1.6605 \times 10^{-24}$ grams |
| Angstrom Unit | $\AA=10^{-10} \mathrm{~m}=0.1 \mathrm{~nm}$ |
| Avogadro's Number | $\begin{aligned} & \mathrm{n}=6.02214076 \times 10^{23} \mathrm{~mol}^{-1} \\ & \text { (number of particles per mol) } \end{aligned}$ |
| Molar Volume | $=22.41$ liters (at 1 atm and 273 K ) |
| Boltzmann's Constant | $1.38064852 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$ |
| Plank's Constant | $\mathrm{h}=6.62607 \times 10^{-34} \mathrm{~J} \mathrm{sec}$ |
| Electron Charge | $\mathrm{q}=1.602 \times 10^{-19}$ coulomb |
| Equivalent Of Heat | $\mathrm{J}=4.185 \times 10^{3}$ Joules $\mathrm{K} \mathrm{cal}^{-1}$ |
| Natural Log Base | $e=2.7183$ |
| Velocity Of Light | $\mathrm{c}=2.9979 \times 10^{8} \mathrm{~m} \mathrm{sec}^{-1}$ |
| Velocity Of Sound | $\begin{aligned} \mathrm{s}= & 343 \mathrm{~m} \mathrm{sec}^{-1} \\ & \left(\text { at } 20^{\circ} \mathrm{C} \text { and } 1 \mathrm{~atm}\right) \end{aligned}$ |
| Standard Pressure | $\begin{aligned} \mathrm{p}= & 101325 \mathrm{~Pa}=1013 \mathrm{mbar} \\ & \left(\text { at sea level and } 0^{\circ} \mathrm{C}\right. \text { ) } \end{aligned}$ |
| Magnetic Flux Density | $\mathrm{T}=$ Tesla (1 gauss $\mathrm{G}=10^{-4} \mathrm{Vs} \mathrm{m}{ }^{-2}=10^{-4} \mathrm{~T}$ ) |

Ideal Gas Equation

| $\mathrm{PV}=\mathrm{nRT}$ |  |  | $=\mathrm{nk} T$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}=$ pressure in Torr |  |  | press | ure in dynes |
| $\mathrm{V}=$ volume in liters |  |  | volum | e in cc |
| $\mathrm{n}=$ numbers of Moles |  |  | numb | ers of Moles |
| $\mathrm{R}=$ molar gas constant |  |  | Boltzm | mann's constant |
| T = Kelvin |  | T = Kelvin |  |  |
| P | V | T | R |  |
| Pascal ( $\mathrm{N} / \mathrm{m}^{2}$ ) | $\mathrm{m}^{3}$ | K | 8.31 | 4 Joule / K mole |
| dyne / cm ${ }^{2}$ | $\mathrm{cm}^{3}$ | K | 8.31 | -10 ${ }^{7} \mathrm{erg} / \mathrm{K}$ mole |
| Torr | $\mathrm{cm}^{3}$ | K | 6.236 | - $10^{4}$ Torr cm ${ }^{3}$ / K mole |
| Torr | liters | K | 62.36 | 64 Torr liters /K mole |
| atm | $\mathrm{cm}^{3}$ | K | 82.0 | $57 \mathrm{~atm} \mathrm{~cm}^{3} / \mathrm{K}$ mole |

## Physical properties of gases

| Gas | Chemical formula | Molecular weight |
| :--- | :--- | :--- |
| Hydrogen | $\mathrm{H}_{2}$ | 2.016 |
| Helium | He | 4.002 |
| Deuterium | ${ }^{2} \mathrm{H}$ | 4.028 |
| Methane | $\mathrm{CH}_{4}$ | 16.04 |
| Ammonia | $\mathrm{NH}_{3}$ | 17.03 |
| Water (vapour) | $\mathrm{H}_{2} \mathrm{O}$ | 18.02 |
| Neon | $\mathrm{Ne}_{2}$ | 20.18 |
| Nitrogen | $\mathrm{N}_{2}$ | 28.01 |
| Oxygen | $\mathrm{O}_{2}$ | 31.99 |
| Argon | Ar | 39.94 |
| Carbon dioxide $\mathrm{CO}_{2}$ | 44.01 |  |
| Krypton | Kr | 83.80 |
| Xenon | Xe | 131.30 |
| Mercury | $\mathrm{Hg}^{2}$ | 200.59 |

Temperature Scale - Conversion Table

| ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ | Kelvin | Significance |
| :--- | :--- | :--- | :--- |
| 212 | 100 | 373 | Boiling point of water |
| 32 | 0 | 273 | Freezing point <br> of water |
| -321 | -196 | 77 | Boiling point of $\mathrm{LN}_{2}$ |
| -459 | -273 | 0 | Absolute zero |


| Conversion Factors |  |  |
| :--- | :--- | :--- |
| ${ }^{\circ} \mathrm{C}=5 / 9(\mathrm{~F}-32)$ | $\mathrm{K}=\mathrm{C}+273$ | ${ }^{\circ} \mathrm{F}=9 / 5 \mathrm{C}+32$ |
| ${ }^{\circ} \mathrm{C}=$ Celsius | $\mathrm{K}=$ Kelvin | ${ }^{\circ} \mathrm{F}=$ Fahrenheit |

## Pressure conversion table

|  | Torr | mbar | Pa | micron | psi | atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Torr | 1 | 1.33 | 133 | 1000 | $1.9 \cdot 10^{-2}$ | $1.32 \cdot 10^{-3}$ |
| 1 mbar | 0.751 | 1 | 100 | 750 | $1.4 \cdot 10^{-2}$ | $9 \cdot 10^{-4}$ |
| 1 Pa | $7.51 \cdot 10^{-3}$ | $1 \cdot 10^{-2}$ | 1 | 7.5 | $1.4 \cdot 10^{-4}$ | 9-10-6 |
| 1 micron (mTorr) | $1 \cdot 10^{-3}$ | $1.3 \cdot 10^{-3}$ | $1.3 \cdot 10^{-1}$ | 1 | $1.9 \cdot 10^{-5}$ | $1.3 \cdot 10^{-6}$ |
| $1 \mathrm{psi}(\mathrm{a})$ | 51.72 | 68.96 | $6.89 \cdot 10^{3}$ | $5.17 \cdot 10^{4}$ | 1 | 7-10-2 |
| 1 atm | 760 | $10^{13}$ | $1.01 \cdot 10^{5}$ | $7.6 \cdot 10^{5}$ | 14.7 | 1 |

Note: Pressures on vacuum instruments are always considered absolute pressure.

## Some molecular relationships (at 273 K)

| Pressure | Molecular Density | Molecular Collision | Mean Free Path | Monolayer Formation |
| :--- | :--- | :--- | :--- | :--- |
| Torr | molec./cm | molec./cm $\cdot \mathrm{sec}$ | cm | time (sec) |
| 760 | $3.25 \cdot 10^{19}$ | $3.78 \cdot 10^{23}$ | $5.1 \cdot 10^{-6}$ | $2.2 \cdot 10^{-9}$ |
| $10^{-3}$ | $3.25 \cdot 10^{1}$ | $3.78 \cdot 10^{17}$ | 5.1 | $2.2 \cdot 10^{-3}$ |
| $10^{-6}$ | $3.25 \cdot 10^{10}$ | $3.78 \cdot 10^{14}$ | 5100 | 2.2 |
| $10^{-9}$ | $3.25 \cdot 10^{7}$ | $3.78 \cdot 10^{11}$ | $5.1 \cdot 10^{6}$ | 2200 |
| $10^{-12}$ | $3.25 \cdot 10^{4}$ | $3.78 \cdot 10^{8}$ | $5.1 \cdot 10^{9}$ | $2.2 \cdot 10^{6}$ |

## Gas flow characteristics

| Viscous Flow | The distance between molecules is small, collisions between molecules dominate, the flow is through momentum transfer, $P$ is generally greater than 1 millibar. |  |
| :---: | :---: | :---: |
|  | $\overline{\mathrm{p}} \cdot \mathrm{D}>0.7(\mathrm{mbarcm})$; | $\lambda<$ D/100 |
|  | Pressure (millibar) x Diameter (centimeters) $\geq 0.7$ |  |
| Transition Flow | Region between viscous and molecular flow |  |
|  | $1.3 \cdot 10^{-2}<\overline{\mathrm{p}} \cdot \mathrm{D}<0.7$ (mbar cm); | $D / 100<\lambda<D / 2$ |
| Molecular Flow | The distance between molecules is large, collisions between molecules and wall dominate, the flow is through random motion; P is generally smaller than $10^{-3}$ millibar. A system is in molecular flow when the mean free path is longer than the diameter of the tube or chamber. |  |
|  | $\overline{\mathrm{p}} \cdot \mathrm{D}<1.3 \cdot 10^{-2}(\mathrm{mbarcm}) ;$ | $\lambda<$ D/2 |
|  | Pressure (millibar) x Diameter (centimeters) $\leq 0.013$ |  |



PUMP

## Formulas and Tables

Conductance - Viscous flow formulas

Conductance changes according to the pressure in the pipe. For air at $20^{\circ} \mathrm{C}$ :

| Aperture | $\mathrm{C}=20 \mathrm{~A}$ | where $\mathrm{A}=$ Area, $\mathrm{cm}^{2}$ $C=1 / \mathrm{sec}$ |
| :---: | :---: | :---: |
| Pipe | $C=\frac{137 D^{4}}{L} \bar{p}$ | $\begin{aligned} & \mathrm{D}=\text { Diameter }, \mathrm{cm} \\ & \mathrm{P}=\text { Pressure }, \mathrm{mbar} \\ & \mathrm{~L}=\text { Length } \mathrm{cm} \end{aligned}$ |

## Conductance - Molecular flow formulas

| The conductance is independent of the pressure. For air at $20^{\circ} \mathrm{C}$ : |  |  |
| :---: | :---: | :---: |
| Aperture | $\mathrm{C}=11.6 \mathrm{~A}$ | where $\begin{aligned} & \mathrm{A}=\text { Area }, \mathrm{cm}^{2} \\ & \mathrm{C}=\mathrm{I} / \mathrm{sec} \end{aligned}$ |
| Long pipe | $\mathrm{C}=\frac{12.1 \mathrm{D}^{3}}{\mathrm{~L}}$ | $\begin{aligned} & \mathrm{D}=\text { Diameter, } \mathrm{cm} \\ & \mathrm{~L}=\text { Length, } \mathrm{cm} \\ & \text { valid when Length >Diameter } \end{aligned}$ |
| Short pipe | $C=\frac{11.6 \mathrm{~A}}{1+\mathrm{L} / \mathrm{D}}$ | $\begin{aligned} & \mathrm{D}=\text { Diameter, } \mathrm{cm} \\ & \mathrm{~L}=\text { Length, } \mathrm{cm} \\ & \text { valid when Length < } 0.7 \text { times } \\ & \text { Diameter } \end{aligned}$ |

## Series conductance and effective

 pumping speed

$$
\begin{array}{ll}
\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} & \frac{1}{S_{\text {eff }}}=\frac{1}{S}+\frac{1}{C_{T}} \\
C_{T}=\frac{C_{1} \times C_{2}}{C_{1}+C_{2}} & S_{\text {eff }}=\frac{S \times C_{T}}{S+C_{T}}
\end{array}
$$

where:
$S_{\text {eff }}=$ Effective pumping speed ( $1 / \mathrm{s}$ )
$S=$ Nominal pumping speed (l/s)
C = Conductance (l/s)

Pumping speed - Conversion table

| Pressure | $\mathrm{L} / \mathrm{s}$ | $\mathrm{L} / \mathrm{min}$ | $\mathrm{m}^{3} / \mathrm{h}$ | Cubic Feet per Minute |
| :--- | :--- | :--- | :--- | :--- |
| 1 liter per second | 1 | 60 | 3.6 | 2.19 |
| 1 liter per minute | 0.01666 | 1 | 0.06 | 0.0353 |
| 1 cubic meter per hour | 0.287 | 16.67 | 1 | 0.589 |
| 1 cubic foot per minute | 0.472 | 28.32 | 1.70 | 1 |

Pump Down calculation (Viscous flow)
This equation is accurate from start to approximately 1 mbar . At lower pressures outgassing can become significant.

$$
t=\frac{V}{S} \ln \frac{P o}{P f}
$$

| $t=$ Pump down time $(\mathrm{sec})$ | multiply by: |
| :--- | :--- |
| $S=$ Pumping speed $(\mathrm{L} / \mathrm{sec})$ | 1.5 for pressure to 0.5 mbar |
| $V=$ Chamber volume $(\mathrm{L})$ | 2 to $5 \cdot 10^{-2} \mathrm{mbar}$ |
| $P_{o}=$ Beginning pressure mbar | 4 to $1 \cdot 10^{-3} \mathrm{mbar}$ |
| $P_{f}=$ Final pressure | $\left(\ln =2.3 \log _{10}\right)$ |

## Throughput

Throughput: quantity of gas per unit time,


$$
\begin{aligned}
& \mathrm{Q}=\mathrm{C} \cdot\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)=\mathrm{P}_{2} \cdot \mathrm{~S} \\
& \text { or: } \mathrm{Q}=\frac{V}{t} \mathrm{P}=\mathrm{SP}
\end{aligned}
$$

Throughput $=$ Conductance $\times$ Pressure $=$ Pressure $\times$ Pump Speed
Throughput is expressed in mbar liters/sec, Torr liters/sec, standard cc's/min.

Unit of throughput - flow - leak rate - conversion table

| Flow or leak rate | $\begin{aligned} & \text { STD (cc/s) } \\ & \text { atm (cc/s) } \\ & \text { mbar (L/s) } \end{aligned}$ | molecules/s (at $0^{\circ} \mathrm{C}$ ) | Torr (L/s) | $\mathrm{Pa}\left(\mathrm{m}^{3} / \mathrm{s}\right)$ | sccm |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | L/s | L/min | $\mathrm{m}^{3} / \mathrm{h}$ | Cubic Feet per Minute |  |
| 1 STD cc/sec - 1 atm cc/sec - 1 mbar l/sec | 1 | $2.687 \cdot 10^{19}$ | 0.76 | 0.1 | 60 |
| 1 molecule/s | $3.72 \cdot 10^{-20}$ | 1 | $2.86 \cdot 10^{-20}$ | $3.72 \cdot 10^{-21}$ | $2.23 \cdot 10^{-18}$ |
| 1 Torr I/sec | 1.3 | $3.493 \cdot 10^{19}$ | 1 | 0.13 | 80 |
| $1 \mathrm{~Pa} \mathrm{~m}^{3} / \mathrm{sec}$ | 10 | $2.687 \cdot 10^{20}$ | 7.5 | 1 | 600 |
| 1 sccm | 0.016 | $4.299 \cdot 10^{17}$ | 0.0125 | 0.016 | 1 |

## Pump down calculation (Molecular flow)

Where gas load is dependent upon outgassing, the final pressure depends on the property of the surface and time necessary to reach the working pressure may be calculated by the following relation:

## Where

$t=$ time (hours) necessary to reach the working pressure
$Q_{\text {outgas }}=$ gas load referred to time $t_{0}$ (generally 1 hour)
A = internal area exposed to vacuum

## Outgassing rate per unit area

| Qoutgas | 1 h | 10 h | 100 h |
| :--- | :--- | :--- | :--- |
| Viton A - Dry | $2 \times 10^{-6}$ | $1 \times 10^{-7}$ | $1 \times 10^{-9}$ |
| Aluminum - Cleaned | $1 \times 10^{-8}$ | $1 \times 10^{-9}$ | $2 \times 10^{-10}$ |
| Stainless - Degreased | $2 \times 10^{-9}$ | $2 \times 10^{-10}$ | $2 \times 10^{-11}$ |
| Stainless - Cleaned | $3 \times 10^{-9}$ | $1.5 \times 10^{-10}$ | $2 \times 10^{-11}$ |
| Stainless -24 h baked at $150^{\circ} \mathrm{C}$ | $4 \times 10^{-12}$ | $4 \times 10^{-12}$ | $4 \times 10^{-12}$ |

$$
\frac{t=Q_{\text {outgas }} \times A \times t_{0}}{s_{\text {eff }} \times P_{\text {work }}}
$$

The ultimate pressure of the vacuum system is determined by the pumping speed and the limiting compression for various gases, where $Q_{i}$ is the gas load from a gas type ${ }_{i}$ and $S_{i}$ is the pumping speed for that gas. $P_{2 i}$ is the outlet pressure for gas type ${ }_{i}$ and $\mathrm{K}_{\mathrm{i}}$ is the compression ratio of the pump for gas type.
$P_{1}=\left(\Sigma \frac{Q_{i}}{S_{i}}\right)_{\text {ext }}+\left(\Sigma \frac{Q_{i}}{S_{i}}\right)_{i n t}+\Sigma \frac{P_{2 i}}{K_{i}}$

## Formulas and Tables

## Vacuum technology standards

| Number | Title |
| :---: | :---: |
| DIN 28400 | Vacuum Technology; Designations and Definitions |
| DIN 28401 | Graphic Symbols in Vacuum Technology |
| DIN 28402 | Vacuum Technology: Variables, Symbols, Units - Overview |
| DIN 28403 ISO 1609 PNEUROP 6606 | Vacuum Technology; Quick Connections, Small Flange Connections |
| DIN 28404 ISO 1609 PNEUROP 6606 | Vacuum Technology: Flanges, Dimensions |
| DIN 28410 | Vacuum Technology; Mass Spectrometer Partial Pressure Gauges, Definitions |
| $\begin{aligned} & \text { DIN } 28411 \\ & \text { ISO } 3530.2 \end{aligned}$ | Mass Spectrometer type Leak Detector Calibration |
| DIN 28416 | Calibration of Vacuum Gauges - General Method |
| DIN 28417 | Measurement of Throughput by Volumetric Method |
| DIN 28418 ISO/DIS 3567 | Vacuum Gauges - Calibration by Direct Comparison |
| DIN 28426, part I, II ISO 1607 / 1,2 PNEUROP 6602 | Positive Displacement Vacuum Pumps- Measurement of Performance Characteristics. Measurement of Ultimate Pressure |
| DIN 28427 <br> ISO 1608 / 1,2 <br> PNEUROP 5607 | Vapor Vacuum Pumps - Measurement of Performance Characteristics. Measurement of Critical Backing Pressure |
| DIN 28428 PNEUROP 5608 | Vacuum Technology; Acceptance Specifications for Turbo Molecular Pumps |
| DIN 28429 PNEUROP 5615 | Vacuum Technology; Acceptance Specifications for Getter Pumps |
| DIN 28430 <br> PNEUROP 6601 | Measurement of Performance of Ejector Vacuum Pumps and Ejector Compressors |
| ISO 1314 | Pressure; Basic Definitions, Units |
| ISO 3529 I,II,III | Vacuum Technology Vocabulary |
| ISO/DIS 3556 / 1 | Sputter Ion Pumps - Measurement of Performance Characteristics. |
| ISO/DIS 3568 | Ionization Vacuum Gauges - Calibration by direct comparison |
| ISO/DIS 3570 / 1 | Vacuum Gauges - Standard Methods for Calibration |
| ISO/DIS 3669 | Bakeable Flange Dimensions |
| PN5ASR CC/5 | Vacuum Pumps, Acceptance Specifications Refrigerator Cooled Cryopumps |

ISO - International Standardization Organization - Switzerland
DIN - Deutsches Institut fuer Normung - Germany
PNEUROP - European Committee of Manufacturers of Compressors, Vacuum Technology, Pneumatic Tools, Air Treatment Equipment and Condensate Treatment Equipment - England

## Graphic Symbols in Vacuum Technology DIN28401

## Vacuum pumps




Vacuum chambers


## Isolation devices



Right-angle stop cock

## Valve mode of operation



Variable leak valve


Electromagnetic operation

## Connections and tubes



Positive displacement pump


Change in the cross section of a duct
$\perp$ Intersection of two ducts with connection $\ldots$ Crossover of two ducts without connection



Flexible connection (e.g., bellows, flexible tubing)

- $\left\lvert\, \frac{1}{-}\right.$ Linear motion leadthrough, flange-mounted $\neg \left\lvert\, \frac{1}{}\right.$ Linear motion leadthrough, without flange
! Leadthrough for transmission of rotary and linear motion Rotary transmission leadthrough


(V) Vacuum measurement, gauge head


| $\forall$ | $\zeta$ |
| :--- | :--- |

## Glossary of Vacuum Terminology

| Absolute pressure | See pressure, absolute. |
| :---: | :---: |
| Absolute temperature | The temperature scale that starts at "true" or absolute zero. It is often called the Kelvin scale. |
| Absorption | The binding of a gas in the interior of a solid or liquid. |
| Adsorption | The condensing of a gas on the surface of a solid. |
| Atmosphere, standard | See standard atmosphere. |
| Atom | The smallest identifiable part of an element. An atom has a nucleus with particles called protons and neutrons. Under normal conditions, it is surrounded by a number of electrons equal to the number of protons. Neutrons are neutral, protons are positively charged, and electrons are negatively charged. |
| Atom mass unit | A way of classifying atoms according to their weight, or mass. Atoms of the different elements have different weights, or masses. |
| Avogadro's Law | The gas law that states that one mole of any gas has $6.023 \times 10^{23}$ particles, and under standard conditions occupies 22.4 liters. |
| Backing pump | See forepump. |
| Backstreaming | The small amount of pump fluid vapor that moves in the wrong direction, i.e., toward the work chamber. |
| Bakeout | The degassing of a vacuum system by heating during the pumping process. |
| Bar | Unit of pressure measurement. There are 1.010 bar in one standard atmosphere. One bar equals $1 \times 106$ dynes per square centimeter. |
| Base pressure | That pressure which is typically reached with your system when it is clean, empty, and dry. |
| Blower pump | A type of vacuum pump which functions from 10 Torr to 0.0001 Torr, Also called a booster or Roots pump. |
| Body | That part of a valve which contains the external openings for entrance and exit of the controlled fluid. |


| Bomb test | A method of helium leak testing where sealed parts are enclosed in a container that is pressurized with helium. Parts that have a leak will then have helium forced into them. This process is known as bombing. Afterwards, parts are removed from the pressurized bombing container and then checked with a helium leak detector to detect if any helium is leaking from the parts, thus indicating a leaking part. |
| :---: | :---: |
| Bonnet | In general, that part of the valve through which the stem enters the valve, and which is rigidly attached to the valve body. |
| Bourdon gauge | A roughing gauge that responds to the physical forces that a gas exerts on a surface. |
| Boyle's law | The gas law that states $\mathrm{P}_{1 \mathrm{V1} 1}=\mathrm{P}_{2 \mathrm{VV}_{2}}$, or original pressure times original volume equals new pressure times new volume. This equation predicts new pressure or new volume whenever the other is changed by any amount (providing that the temperature is unchanged). |
| Calibrated leak | An external reference standard that permits calibration of a helium leak detector. |
| Capacitance manometer | A vacuum gauge which senses pressure by the change in capacitance between a diaphragm and an electrode. |
| Charles' law | The gas law that describes what happens to the volume of gas as the temperature is changed. As a gas is cooled, its volume gets smaller. As a gas is heated, its volume increases (at constant pressure). |
| Chemisorption | The binding of a gas on or in a solid by chemical action. (See gettering.) |
| Closed-loop refrigeration system | A refrigeration system in which the coolant is recycled continuously. |
| Cold cap | A component mounted on top of the jet assembly in a diffusion pump. This cap helps to keep pump fluid vapor out of the work chamber. |
| Cold cathode discharge | A visible glow caused by the recombination of electrons and ions. The color is characteristic of the gas species present. |
| Cold cathode gauge | See ionization gauge. |
| Cold trap | See cryotrap. |
| Condensation | The process of a gas turning back into a liquid. |
| Conductance | A term used to indicate the speed with which atoms and molecules can flow through a particular region such as an orifice or pipe. |
| Conductance limited | The inability to make use of the rated speed of a pump due to the use of an opening or pipe smaller than the inlet diameter of the pump. |


| Conduction | The transfer of energy (heat, light, etc.) by direct contact. In the case <br> of gaseous conduction, the transfer of energy by molecules directly <br> contacting surfaces and other molecules. |
| :--- | :--- |
| Convection | The transfer of heat from one place to another by the circulation of <br> currents of heated gas or other fluid. |
| Sritical forepressure | See maximum tolerable foreline pressure. |

The section of a pump through which the gases leave. The exhaust line of a pump.

| Foreline valve | A vacuum valve placed in the foreline to permit isolation of the pump from <br> the forepump. |
| :--- | :--- |
| Forepump | The pump which is used to exhaust another pump, which is incapable of <br> discharging gases at atmospheric pressure. Also called the backing pump. |
| Fractionation | A process that helps to purify the condensed fluid in a diffusion pump. This <br> process removes contaminants produced by decomposition of pump fluid. |
| A state of matter where the individual particles are free to move in any direction |  |
| and tend to expand uniformly to the confines of a container. |  |

\(\left.$$
\begin{array}{ll}\text { Ion } & \begin{array}{l}\text { A charged particle consisting of an atom or molecule which has an excess of } \\
\text { positive or negative charges. Typically produced by knocking an electron(s) out } \\
\text { of an atom or molecule to produce a net positive charge. }\end{array}
$$ <br>
Ionization <br>

The process of creating ions. (See ion.)\end{array}\right\}\)| A vacuum gauge that has a means of ionizing the gas molecules, electrodes to |
| :--- |
| enable the collection of the ions formed, and a means of indicating the amount of |
| the collected ion current. Various types of ionization gauges are identified according |
| to the method of producing the ionization. The common types are: |


| Mass spectrometer Leak detector | A mass spectrometer adjusted to respond only to the tracer gas. Helium is commonly used as the tracer gas, and thus the instrument is normally referred to as a helium leak detector. |
| :---: | :---: |
| Maximum tolerable Foreline pressure | A measure of the ability of the diffusion pump to pump gases against a certain discharge pressure. Also called critical forepressure. |
| Mean free path | The average distance between molecular collisions. Of importance for vacuum systems is where one is interested in getting a particular type of particle from a source to a surface. Examples include ion implanters, coaters, or television tubes. |
| Micron | Unit of length equal to one millionth of a meter. |
| Millibar | Unit of pressure measurement, equal to 1/1000 bar. |
| Millimeter of mercury | See Torr. |
| Millitorr | Unit of pressure measurement, equal to 1/1000 Torr. |
| Mole | The number of particles in equal volumes of gases under the same conditions of temperature and pressure. One mole of any gas has $6.023 \cdot 10^{23}$ particles. |
| Molecular density | The number of molecules in a unit of volume such as a cubic centimeter. There are approximately $3 \cdot 10^{19}$ molecules per cc at one standard atmosphere. |
| Molecular flow | The type of flow that occurs in the range of pressures in which gas molecules are fewer and spread far apart. Fewer collisions occur, the mean free path is longer, and molecules tend to act independently of each other. |
| Molecular sieve | A very porous material used to contain the pumped gases in sorption pumps. May also be used in a foreline trap to contain oil molecules. |
| Molecular sieve trap | A device used to collect oil vapors backstreaming from oil-sealed mechanical pumps. |
| Molecular weight | A way of classifying molecules according to their weight, or mass. Molecular weight or mass is the sum of the individual atomic weights that make up the molecule. |
| Molecule | One atom, or two or more atoms joined together and having definite chemical and physical characteristics. |
| Neutron | A particle located in the nucleus of an atom which has no electrical charge but does have mass. (see atom.) |
| Neutron | The dense center portion of an atom containing protons and neutrons. (see atom.) |
| Open-loop refrigeration system | A refrigeration system in which the coolant vents to atmosphere. |


| Outgassing | The process in which a gas particle leaves a surface and moves into the volume <br> of a vacuum chamber. This adds to the gas load and may or may not be desirable. <br> In extreme cases, it prevents pumping down a vacuum system to the specified <br> pressure. The system is then said to be outgassing, also called desorption or <br> virtual leak. |
| :--- | :--- |
| Outside-in leak detection | A leak detection technique where the leak detector senses a tracer gas that passes <br> from the outside of the container to the inside of the container. May be used to <br> determine the size and/or the location of a leak. |
| Technique | See pressure, partial. |
| Partial pressure | Unit of pressure measurement. There are 101,325 pascals in one standard <br> atmosphere. A pascal equals one newton per square meter. |
| Pascal | Molecular-scale holes through a material of construction. (see leak.) |
| A vacuum gauge used to measure pressure in the rough vacuum range. |  |

\(\left.$$
\begin{array}{ll}\text { Pressure, vapor } & \begin{array}{l}\text { The pressure exerted by molecules after they have escaped from a liquid or solid and } \\
\text { formed a vapor (gas). One tries, in general, to put substances of low vapor pressure } \\
\text { into a vacuum system so as to decrease the gas load on the vacuum pumps. }\end{array} \\
\text { Pressure, vapor } & \begin{array}{l}\text { The pressure exerted by molecules after they have escaped from a liquid or solid and } \\
\text { formed a vapor (gas). One tries, in general, to put substances of low vapor pressure } \\
\text { into a vacuum system so as to decrease the gas load on the vacuum pumps. }\end{array} \\
\text { A tube having a fine opening at one end, used for directing or collecting a stream of } \\
\text { tracer gas. }\end{array}
$$ \quad \begin{array}{l}A leak test in which the tracer gas is applied by means of a probe so that the area <br>

covered by a tracer gas allows the tracer gas to enter and locate the leak.\end{array}\right\}\)| A positively charged particle. (See atom.) |
| :--- |
| Probe testPounds per square inch absolute, a unit of pressure measurement. <br> There are 14.69 psia in one standard atmosphere. |
| PsigPounds per square inch gauge, a unit of pressure measurement. Gauge pressure is <br> the difference between absolute pressure and atmospheric pressure. One standard <br> atmosphere equals 0 psig. |
| Pump-down curve |
| A graphic plot of pressure versus time as a vacuum system is being pumped. Usually |
| plotted on graph paper. Can be used to distinguish real leaks from virtual leaks. |


| Real leak | A crack or hole that allows gases to pass through in both directions. (See leak.) |
| :---: | :---: |
| Regeneration | Some vacuum pumps and traps fill up from usage (containment pumps) and must be emptied periodically. The process of emptying the pump is called regeneration. |
| Residual gas analyser | A gauge that measures partial pressure. |
| Roots blower | See blower pump. |
| Roughing | The initial evacuation of a vacuum system. |
| Rough pump | A vacuum pump which will function in the rough vacuum range. A roughing pump is often used to "rough" a vacuum chamber. Typical examples of rough pumps are the mechanical pump and the sorption pump. |
| Rough vacuum | Pressure which ranges from just below atmospheric pressure to about $10^{-3} \mathrm{Torr}$ (0.001 Torr). |
| Sniffer probe | See probe. (Also called a detector probe.) |
| Sputtering | The release of one or more molecules from a cathode surface when that surface is struck by a high-energy ion. |
| Standard atmosphere | At $45^{\circ} \mathrm{N}$ latitude, at sea level, and $0^{\circ} \mathrm{C}$, the average pressure exerted on the earth's surface. This average pressure is 14.69 pounds per square inch (absolute), or 14.69 psia. |
| Standard cubic centimeter | The quantity of gas in a volume of 1 cc at standard temperature and pressure $\left(0^{\circ} \mathrm{C}\right.$, 760 Torr). |
| Static seal | A seal that does not move. (See dynamic seal). |
| Sublimation | The process in which a substance can go directly from the solid state to the vapor state, without passing through a liquid state. |
| Sublimes | Changes directly from a solid to a vapor state. |
| Tc gauge | See thermocouple gauge. |
| Temperature | A qualitative measurement of energy. The hotter something is, the more energy it contains, thus its temperature is higher. |
| Thermal expansion rate | Materials change in size as their temperature changes. This size-to-temperature relationship of the material is called its thermal expansion rate. |
| Thermocouple gauge | A vacuum gauge used to measure pressure in the rough vacuum range. |
| Throughput | Pumping speed times pressure, used to express the quantity of gas per unit of time flowing through a vacuum system or component, such as a pump. Typical unit of measure is Torr-liters per second. It is a unit of power; 5.70 Torr-liters/sec $=1$ watt. |


| Torr | Unit of pressure measurement, equal to the force per unit area exerted by a column of mercury one millimeter high. There are 760 Torr in one standard atmosphere. |
| :---: | :---: |
| Tracer gas | A gas which, passing through a leak, can be detected by a specific leak detector and thus reveal the presence of a leak. |
| Transfer pressure | See crossover pressure. |
| Transition range | A range of pressure that cannot be defined as either a viscous flow condition or molecular flow condition. |
| Trap | A device which will hold selected molecules and not let them pass. Two common types are the molecular sieve trap and the liquid nitrogen trap. |
| Tubulation | A pipe or hose used in a vacuum system. |
| Ultimate pressure | The lowest pressure a vacuum pump or vacuum system can reach when clean and empty. Is dependent upon the particular gas species being pumped. |
| Ultrahigh vacuum | Pressure which ranges from about $10^{-8} \mathrm{Torr}\left(0.00000001\right.$ Torr) to less than $10^{-14}$ Torr. |
| Ultrahigh vacuum pump | A vacuum pump which will function in the ultrahigh vacuum range. Typical examples are the ion pump and the TSP (titanium sublimation pump). |
| Useful operating range | The pressure range of a vacuum pump between the higher pressure limit where it will begin pumping, and the base (or ultimate) pressure, which is the pump's lower operating limit. |
| Vacuum | Any pressure lower than atmospheric pressure. |
| Vacuum pump | A type of pump which is capable of removing the gases in an enclosed volume such as a vacuum chamber. <br> Vacuum pumps are typically divided into three broad categories: <br> 1. roughing pumps, <br> 2. high vacuum pumps, <br> 3. ultrahigh vacuum pumps. |
| Vapor | The gas produced as a result of evaporation. |
| Vapor pressure | See pressure, vapor. |
| Vent valve | A valve used for letting atmospheric air or other gas into a vacuum system. Also called a back-to-air valve. |
| Virtual leak | An apparent leak that is caused by release of gas from a trapped volume or outgassing of some volatile material or trapped gas inside a vacuum system. (see leak.) |

Viscous flow

Work chamber

The type of flow which occurs when gas molecules are packed closely together and collide with each other quite frequently.

A contained volume from which some of the air and other gases have been removed. The work chamber separates the vacuum from the outside world. The portion of a vacuum system where the process is performed. (See bell jar.)

## Vacuum made simple

We're here to help you solve all of your vacuum and leak detection challenges.

Choose your preferred way to get in touch:

Get help from a vacuum expert here:
www.agilent.com/en/product/vacuum-technologies

## Chat Now

Buy online:
www.agilent.com/store

Join the Vacuum Community to get answers
to your technical questions and access resources.
https://community.agilent.com/technical/vacuum/

## U.S. and Canada

Toll free: +1 8008827426
vpl-customercare@agilent.com

Europe, Middle East, Africa, India

Toll free: 0080023423400
vpt-customercare@agilent.com

## China

Toll free: 8008206778
Contacts.vacuum@agilent.com

